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Chapter 4. The Structure of the Atom 
 

Notes: 
• Most of the material in this chapter is taken from Thornton and Rex, Chapter 4. 

4.1 The Atomic Models of Thomson and Rutherford  
Determining the structure of the atom was the next logical question to address following 
the discovery of the electron by J. J. Thomson. It was already established that the number 
of electrons within an atom was essentially half of the atom’s mass number (i.e., the ratio 
of the atom’s mass to that of hydrogen). Since the electron was also known and measured 
to be much less massive than the atom, it was expected that mass of the positively 
charged component of the atom would be significant (relatively speaking; the atoms were 
known to be electrically neutral). Understanding the structure of the atom was also 
desirable when considering that, at that time, chemists had identified more than 70 
different kinds of atoms. One would then be hopeful that these different atomic 
realisations could be explained within the context of a theory resting on simple “rules,” 
which would define the structure of atoms. 
 
Thomson proposed a model where the positive charge within an atom is uniformly 
distributed within a sphere of appropriate size, with the electrons somehow localized 
within this volume; this is the so-called “plum-pudding” model. Thomson then theorized 
that when the atom is heated up the electrons are randomly accelerated and responsible 
for the emission of radiation. The electrons’ lower mass implied that their motion would 
be more important than the heavier positive charges and therefore more apt to produce 

Figure 1 – Schematic of the 
scattering experience performed 
in Rutherford’s laboratory to 
investigate the atomic structure. 
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radiation. Despite the apparent simplicity of his model, Thomson never was able to 
calculate the spectrum of hydrogen with it. This model eventually had to be abandoned.  
 
This would be made evident from the work of Ernest Rutherford (1871-1937) who 
would use his newly established experimental method of bombarding α  particles (i.e., 
helium nuclei) onto thin target materials. The main evidence came from the fact that his 
team’s experiment on gold-leaf targets revealed the backward scattering (i.e., at more 
than  90 ; see Figure 1) for some incident α  particles. Since Thomson’s model would 
imply that the α  particles should go through the positive charge of the atom basically 
unimpeded (that component corresponds to the “pudding” in the model) the scattering 
could only be the result of collisions between the α  particles and the electrons 
populating the atoms. The impossibility that the backward scattering resulted from such 
collisions can be verified as follows. 
 
We calculate the maximum scattering angle stemming from the elastic collision between 
one α  particle and an electron, choosing a reference frame where the electron is initially 
at rest. Of course, we must impose the conservations of energy and linear momentum 
before and after the collision 
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The second of these equations can be shown to lead to (the first of equation (4.1) was 
used to obtain the last relation)   
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  (4.2) 

 
where θ  and ϕ  are, respectively, the angles made by 	 ′vα  and 		 ′ve  relative to 	vα . The 

approximation in the last of equations (4.2) is valid, since we expect 	 ′vα ! vα  because 

 mα me  4 ×18371 . That is, the α  particle basically overruns the electron as if 
nothing was standing in its way.  We can verify that when 	θ =0  (i.e., a one-dimensional 
head-on collision) 		 ′ve =2vα , which is the result expected in this case (see your First-year 
physics course).   
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By combining these two equations it can be shown that the maximum value for θ  will be 
reached when 		 ′ve =2vα 3  with 
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  (4.3) 

 
This constitutes the absolute maximum scattering angle (as defined in Figure 1).  
 
We must however consider the fact that one α  particle will collide with more than one 
electron as it scatters against the thin gold-leaf target. But these collisions are all 
statistically independent, i.e., they will all be randomly oriented on a cone of opening 
angle 2θ . The angle resulting from one scattering event can therefore be decomposed 
into two components about perpendicular axes. For example, if we choose the direction 
of the incident α  particle as along the z -axis, i.e., vα = vαez , then we have 
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The random composition of the different angles implies that the mean angle about a given 
axis is on average zero, but the standard deviation will be determined as follows, say, for 
the x -axis, 
 
 θ x,N

2 = Nθ x
2,   (4.5) 

 
after N  statistically independent collisions (this is an example of a random walk). The 
same rule applies for the y -axis, such that the standard deviation of the total angle is 
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  (4.6) 

 
For Rutherford’s experiment the gold-leaf was τ = 6 ×10−7m  thick; we must use this 
information to approximately calculate N . Using the atomic data for gold we can 
determine the density of atoms n  in the leaf as  
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  (4.7)  

 
which implies that one atom occupies on average a volume of 1 5.9 ×1029( )m3 . The 
linear distance between atoms is therefore approximately the cubic root of this value, i.e., 
 d  2.6 ×10−10m .  It then follows that 
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N  τ

d
= 2,300 atoms,   (4.8) 

 
and in the (highly improbable) case where all collisions yield an angle 	θmax   
 

 

		 

θ
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  (4.9) 

 
This value is evidently completely inconsistent with backward scattering. This prompted 
Rutherford to conclude that his results were not in agreement with Thomson’s atomic 
model. In fact, looking at the first of equations (4.2) we find that a backward scattering 
will be more likely to happen if we replace the mass of the electron by a larger one. It is 
straightforward to verify that backward scattering is very likely if the mass of the target is 
49mα  (i.e., approximately the atomic mass of gold). For example, the final speed of the 
α  particle is  ′vα  −0.85vα  for a one-dimensional collision. Rutherford then proposed a 
new model where the atom is mostly empty space with the charge (positive or negative; 
his experiment could not determine the position of the electrons) concentrated at the 
centre: the nucleus.  

4.1.1 Rutherford Scattering 
Rutherford could quantitatively follow up on his proposition on the presence of an atomic 
central charge by making further scattering experiments using his α  particles 
bombarding technique and making the following assumptions: 
 

1. The targets (initially at rest) are much more massive than the α  particles and, 
therefore, do not recoil; this implies that the magnitude of the initial and final 
momenta of the incident particles are the same. 

2. The α  particles scatter off only one target (i.e., the target foil is very thin). 
3. The incident and target particles can be treated as point masses. 
4. The only force involved in the scattering is the (electrostatic) Coulomb force. 

 
A diagram for a given collision is shown in Figure 2; such process is called Coulomb or 
Rutherford scattering. The important parameters are shown in the figure: b  is the impact 
parameter, θ  is the scattering angle, Z1e  and Z2e  are the charges of the incident and 
target particles, respectively, and the instantaneous distance r  of the incident particle to 
the target can be parameterised with the angle φ , which is set to zero at the collisional 
symmetry axis (the ′z -axis). Because the angular momentum is also conserved (and the 
target does not move or recoil) the magnitude of the angular momentum of the α  particle 
is the same before and after the scattering at 
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 L = mv0b,   (4.10) 
 
with v0  is the initial speed of the α  particle, and it also implies that the scattering event 
takes place in a plane. Rutherford was able to derive an equation relating the impact 
parameter b  and the scattering angle θ , which we demonstrate here. 
 
The change in momentum of the α  particle is given by 
 
 Δp = p f − pi   (4.11) 
 
where the only difference between the initial and final vectors is in their direction, as they 
both have a magnitude of mv0 . We then write 
 
 Δp = mv0 cos θ( )−1⎡⎣ ⎤⎦ex + sin θ( )ey{ },   (4.12) 
 
with the x  and y  axes being horizontal and vertical in Figure 2, respectively. It follows 
that 
 

 

Δp = mv0 cos θ( )−1⎡⎣ ⎤⎦
2
+ sin2 θ( )

= mv0 2 1− cos θ( )⎡⎣ ⎤⎦

= mv0 2 2sin2 θ 2( )⎡⎣ ⎤⎦
= 2mv0 sin θ 2( ),

  (4.13) 

  
since more generally 
 

Figure 2 – Rutherford scattering of a  
particle off a massive target. 
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sin a( )sin b( ) = 1
2
cos a − b( )− cos a + b( )⎡⎣ ⎤⎦

cos a( )cos b( ) = 1
2
cos a − b( ) + cos a + b( )⎡⎣ ⎤⎦

sin a( )cos b( ) = 1
2
sin a − b( ) + sin a + b( )⎡⎣ ⎤⎦.

  (4.14) 

 
We can further use equations (4.12)-(4.14) to write 
 

 

Δp = mv0 −2sin2 θ 2( )ex + 2sin θ 2( )cos θ 2( )ey⎡⎣ ⎤⎦
= Δp −sin θ 2( )ex + cos θ 2( )ey⎡⎣ ⎤⎦
= Δpe ′z

  (4.15) 

 
The last equation follows from the fact that, according to Figure 2, the ′z -axis makes an 
angle of π −θ( ) 2  relative to the negative (horizontal) x -axis, which then means that  
 

 
e ′z = −cos π −θ( ) 2⎡⎣ ⎤⎦ex + sin π −θ( ) 2⎡⎣ ⎤⎦ey

= −sin θ 2( )ex + cos θ 2( )ey .
  (4.16) 

 
The instantaneous Coulomb force felt by the α  particle is 
 

 F = 1
4πε0

Z1Z2e
2

r2
er ,   (4.17) 

 
which is related to Δp  in the last of equations (4.15) through 
 
 Δp = F cos φ( )e ′z dt∫ ,   (4.18) 
 
from the definition of the angle φ . We can therefore write 
 

 
Δp = 2mv0 sin θ 2( )

= Z1Z2e
2

4πε0

cos φ( )
r2

dt
−∞

∞

∫ .
  (4.19) 

 
But the magnitude of the angular momentum of a point mass m  equals its moment of 
inertia mr2  times its angular speed dφ dt , and from equation (4.10) we write 
 

 mr2 dφ
dt

= mv0b,   (4.20) 
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which can be inserted in equation (4.19) to yield 
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The limits integration are simply related through φi = −φ f , since the ′z -axis is the axis of 
symmetry, and from our previous discussion (following equation (4.15)) we know that 
 

 φi = − π −θ
2
.   (4.22) 

 
Equation (4.21) now transforms to 
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  (4.23) 

 
or 
 

 
b = Z1Z2e
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  (4.24) 

    
with K  the kinetic energy of the α  particle. But in order to compare with experiments it 
is desirable to transform this equation to determine the number of α  particles N θ( )  
scattered at angle θ . To do so we first consider Ns  the number of targets of volume 
density n  contained with a foil of thickness t  and area A  
 
 Ns = ntA.   (4.25) 
 
The probability of scattering f  for an incident particle equals this number of targets 
times their cross-section σ  (i.e., their subtended area) divided by the total area. That is, 
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 f = ntAσ
A

= ntσ .  (4.26) 

 
We now associate the cross-section σ  to the area πb2 , i.e., σ = πb2 , for scattering 
through an angle θ  or more, since this angle increases with a smaller impact parameter 
(see Figure 2 and equation (4.24)). The probability of scattering then becomes 
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2
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But since a detector located at an angle θ  will have a finite resolution (or width) dθ  
associated with a set of impact parameters contained within the range b,b + db[ ]  we need 

to calculate  f θ + dθ( )− f θ( )  f θ( ) + df dθ( )dθ⎡⎣ ⎤⎦ − f θ( ) = df , which is  
 

 df = −πnt Z1Z2e
2

8πε0K
⎛
⎝⎜

⎞
⎠⎟

2

cot θ
2

⎛
⎝⎜

⎞
⎠⎟ sin

−2 θ
2

⎛
⎝⎜

⎞
⎠⎟ dθ .  (4.28) 

 
The number of scatterings per unit area at θ  is then simply the product of incident 
particles Ni  of impact parameters in the range b,b + db[ ]  and df  divided by the area 
containing these particles (see Figure 3) 
 

 

N θ( ) = Ni df
dA

=
Niπnt

Z1Z2e
2

8πε0K
⎛
⎝⎜

⎞
⎠⎟

2

cot θ
2

⎛
⎝⎜

⎞
⎠⎟ sin

−2 θ
2

⎛
⎝⎜

⎞
⎠⎟ dθ

2πr2 sin θ( )dθ

= Nint
16

e2

4πε0

⎛
⎝⎜

⎞
⎠⎟

2
Z1
2Z2

2

r2K 2 sin4 θ 2( ) ,

  (4.29) 

 
since, from the last of equations (4.14), sin θ( ) = 2sin θ 2( )cos θ 2( ) . This the Rutherford 
scattering equation, which was found to perfectly match the experimental data obtained 
by his research team. This confirmed his proposition that the atom contained a compact 
central charge. 
 
Exercises 
      
1. (Ch. 4, Prob. 5 in Thornton and Rex.) Calculate the impact parameter for scattering a 
7.7-MeV α  particle from gold at an angle of (a)  1  and (b)  90 . 
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Solution. 
 
The α  particle and gold nucleus have Z1 = 2  and Z2 = 79 , respectively, to be inserted in 
equation (4.24) for  θ = 1    
 

 

b = Z1Z2e
2

8πε0K
cot θ

2
⎛
⎝⎜

⎞
⎠⎟

=
2( ) 79( ) 1.44 ×10−9  eV ⋅m( )

2 7.7 ×106  eV( ) cot 0.5°( ) = 1.69 ×10−12  m
  (4.30) 

 
and for  θ = 90  
 

 b =
2( ) 79( ) 1.44 ×10−9  eV ⋅m( )

2 7.7 ×106  eV( ) cot 45°( ) = 1.48 ×10−14  m.   (4.31) 

 
We used e2 4πε0( ) = 1.44 ×10−9  eV ⋅m  to obtain these equations. 
 
2. (Ch. 4, Prob. 7 in Thornton and Rex.) For aluminum (Z2 = 13 ) and gold ( Z2 = 79 ) 
targets, what is the ratio of α  particle scattering at any angle for equal numbers of 
scattering nuclei per unit area? 
 
Solution.  
 
The number of scatterings at an angle θ  can be obtain from equation (4.29) with 
 

Figure 3 – The area covered by incident 
particles with impact parameters contained 
within .  
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 N θ( ) = Nint
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where nt  represents the number of targets per unit area. Then the ratio of α  particle 
scattering at any angle is 
 

 NAu

NAl

= nAutAu ZAu
2

nAltAl ZAl
2 = 79

2

132
= 36.93,   (4.33) 

 
since it is assumed that the numbers of scattering nuclei per unit area are the same 
nAutAu = nAltAl . 
    
3. (Ch. 4, Prob. 12 in Thornton and Rex.) Consider the scattering of an α  particle from 
the positively charged part of the Thomson plum-pudding model. Let the kinetic energy 
from the α  particle be K  (nonrelativistic) and let the atomic radius be R . (a) Assuming 
that the maximum Coulomb force acts on the α  particle for a time Δt = 2R v  (where v  
is the initial speed of the α  particle), show that the largest scattering angle we can expect 
from a single atom is 
 

 
   
θ  e2

4πε0

Z1Z2

KR
.   (4.34) 

 
(b) Evaluate θ  for an 8.0-MeV α  particle scattering from a gold atom of radius 0.135 
nm. 
 
Solution.  
 
(a) The maximum Coulomb force is at the surface can be calculated by putting all the 
charge at the centre of the sphere and is therefore equal to   Z1Z2e

2 4πε0R2 , with   Z1 = 2 . 
Then 
 

 

  

Δp = FΔt

=
Z1Z2e

2

4πε0R2

2R
v

= e2

4πε0

2Z1Z2

Rv
.

  (4.35) 

 
Using the same argument as that leading to equation 
Error! Reference source not found. we find the maximum angular deflection, for small 
angles, with 
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(b) For an 8.0-MeV α  particle scattering from a gold atom (Z2 = 79 ) of radius 0.135 nm 
we find that    
 

 
 
θ =

2( ) 79( ) 1.44 eV ⋅nm( )
8 MeV( ) 0.135 nm( ) = 2.11×10−4  rad = 0.012°.   (4.37) 

4.2 The Classical Atomic Model 
Rutherford’s theory of α  particle scattering and the corresponding experimental results 
allowed physicists to establish that the atom was composed of a nucleus harbouring the 
positive charge of the atom and electrons surrounding it (Rutherford scattering equation 
(4.29) yields information on Z2  the charge of the nucleus, while the experimental 
determination of the scattering angles confirmed that it is massive and concentrated). 
Although these results clearly excluded Thomson’s plum-pudding model, it did not 
completely rule out a classical model. 
 
Indeed, Thomson had previously considered a “planetary model” with a positively 
charged nucleus at the centre with orbiting electrons. As we will later see this is very 
close in structure to early quantum mechanical models, but it could easily be shown to be 
untenable according to classical physics. If we take for example the hydrogen atom 
composed of a proton nucleus and a single orbiting electron, then we can calculate the 
Coulomb force binding the electron to the proton with 
 

 F = − e2

4πε0r
2 er ,   (4.38) 

 
where er  is the unit vector directed from the proton to the electron. For the atom to be in 
equilibrium, this force must be counteracted by the centrifugal acceleration (times the 
electron mass m ) due to the orbital motion of the electron 
 

 − e2

4πε0r
2 +

mv2

r
= 0,   (4.39) 

 
or, for the electron kinetic energy, 
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K = 1
2
mv2

= 1
2

e2

4πε0r

= − 1
2
U,

  (4.40) 

 
with U  the potential energy due to the Coulomb interaction. It therefore follows that the 
total energy of the electron is negative with 
 

 
E = K +U

= − 1
2

e2

4πε0r
< 0.

  (4.41) 

 
This negative value indicates that the electron is on a bound orbit about the nucleus.  
 
But we also know from Maxwell’s laws that the electron must radiate electromagnetic 
energy as it is accelerating on its orbit (to constantly change its direction of motion and 
stay on a circular orbit). From the conservation of energy its total orbital energy must 
become more negative, and we see from equation (4.41) that the size of its orbit r  
decreases accordingly. This is shown schematically in Figure 4. This scenario is evidently 
flawed as the electron would eventually collapse on the proton and the atom would cease 
to exist. This was another spectacular failure for classical physics…  
 
Exercises 
 
4. (Ch. 4, Prob. 14 in Thornton and Rex.) The radius of a hydrogen nucleus is believed to 
be about 1.2 ×10−15m . (a) If an electron rotates around the nucleus at that radius, what 
would be its speed according to the planetary model? (b) What would be the total 

Figure 4 – The orbit of the 
electron about a proton for a 
classical hydrogen atom. 
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mechanical energy? (c) Are these reasonable? 
 
Solution. 
 
(a) According to equation (4.40) we have 
 

 

v = e2

m4πε0r
= e2

4πε0

⋅ c
mc2r

= c 1.44 ×10−9  eV ⋅m
511 keV( ) 1.2 ×10−15  m( )

= 1.53c.

  (4.42) 

 
(b) According to equation (4.41) we write 
 

 

E = − 1
2

e2

4πε0r

= −1.44 ×10−9 eV ⋅m
2 ⋅1.2 ×10−15 m

= −600 keV.

  (4.43) 

 
(c) Clearly the speed calculated in (a) is impossible as it is greater than the speed of light, 
and the energy in (b) is far too great compared to the ionization potential of hydrogen 
(i.e., 13.6 eV). 

4.3 The Bohr Model of the Hydrogen Atom    
Niels Bohr (1885-1962) was certainly one of the greatest physicists of the twentieth 
century, and arguably one of the best ever. Like Einstein he was one of the first to 
recognize the importance of Planck’s quantum hypothesis, but he also pushed it further 
and with more far-reaching consequences than anybody else. He was a bold thinker who 
could see through the challenges classical physics faced and came up with imaginative 
solutions based on the nascent quantum theory. When considering the failure of the 
atomic classical model Bohr proposed four general assumptions or postulates, which he 
could then use to explain much of the experimental data known at the time: 
 

1. To avoid the in-spiral motions of electrons orbiting a nucleus (see Figure 4), Bohr 
postulated that stationary states existed in atoms where electrons could stay on 
stable orbits. The electrons would therefore not radiate electromagnetic energy 
when occupying a stationary state. 

2. The emission or absorption of radiation can only occur when an electron makes a 
transition between two stationary states. If we denote these states by the 
subscripts ‘1’ and ‘2’, then Bohr asserted that the difference in the energy of the 
two states is quantized with 
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 E = E1 − E2 = hf ,   (4.44) 
   

where h  is the Planck constant and f  the frequency of the radiation emitted or 
absorbed. This hypothesis is then consistent with Einstein’s earlier work on the 
quantization of radiation (i.e., the notion of the photon) and the photoelectric 
effect. 

3. The classical laws of physics only apply to stationary states, not to the transitions 
between them. 

4. Finally, not only is the energy between stationary states quantized but so is the 
angular momentum of the electron-nucleus system, with levels that are multiples 
of   ≡ h 2π . 

 
We can follow Bohr and calculate the following fundamental relations and quantities for 
the hydrogen atom. We first consider the angular momentum of the orbiting electron and 
equate it to the quantized level of the system’s stationary state (the nucleus is much more 
massive than the electron and we will neglect its contribution at present) 
 
  L = mrv = n,   (4.45) 
 
with r  the radius of the orbit (assumed circular), v  the speed of the electron, and 
 n = 1, 2, 3,… the principal quantum number. Using this relation and equation (4.40) we 
find that 
 

 

 

v2 = e2

4πε0mr

= n22

m2r2
,

  (4.46) 

 
This relation, in turn, allows us the define the Bohr radius when n = 1   
 

 

 

a0 =
4πε0

2

me2

= 0.53×10−10m,
  (4.47) 

 
from which we determine the other permitted orbital radii for stationary states 
 

 
 
rn =

4πε0n
22

me2
= n2a0.   (4.48) 

 
Bohr was thus able to determine a fundamental a0  for the hydrogen atom, entirely based 
on fundamental constants, that was in excellent agreement with the experimental data 
already existent at the time (in 1913). This size, i.e., the Bohr radius, corresponds to the 
ground state of the hydrogen atom (when n = 1 ), while stationary states for n >1  are 
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called excited states. The energy associated with stationary states are given, from 
equations (4.41) and (4.48),       
 

 
En = − e2

8πε0rn

= − e2

8πε0a0n
2 ≡ − E0

n2
,
  (4.49) 

 
with the energy of the ground state 
 

 

 

E0 =
e2

8πε0a0

= m
22

e2

4πε0

⎛
⎝⎜

⎞
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2

= 13.6 eV.
  (4.50) 

  
We can also use the second of Bohr’s four assumptions to calculate the frequency or the 
wavelength of the radiation emitted as a result of a transition between two stationary 
states of principal quantum numbers nu  and nl  with 
 

 

1
λ
= Eu − El

hc

= − E0
hc

1
nu
2 −

1
nl
2

⎛
⎝⎜

⎞
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= R∞
1
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2 −

1
nu
2

⎛
⎝⎜

⎞
⎠⎟
,

  (4.51) 

 
with 
 

 

 

R∞ = E0
hc

= m
4πc3

e2

4πε0

⎛
⎝⎜

⎞
⎠⎟

2

= 1.097373×107m−1.
  (4.52) 

   
Bohr had thus succeeded in theoretically deriving the Rydberg equation, established 
experimentally in 1890, and confirming the value of the Rydberg constant R∞  (see 
equation (2.11) of Chapter 2 of the lecture notes). The small discrepancy between Bohr’s 
theoretical value and the experimental determination of Rydberg can be explained by 
taking into account the mass of the proton. Furthermore, Bohr’s theory could be used to 
predict the presence of then unknown spectral lines, which were eventually verified 
experimentally. 



  - 70 - 

 
Finally, another fundamental parameter can be established by considering the orbital 
speed of the electron. Using equations (4.46) and (4.48) we find that 
 

 

 

vn =
1
n

ma0

= 1
n

e2

4πε0
.
  (4.53) 

 
Focusing on the speed of the ground state at n = 1  and dividing it by the speed of light we 
get a unit-less parameter  
 

 

 

α ≡ v1
c
= 
ma0c

= e2

4πε0c

1
137

,
  (4.54) 

 
which is the so-called fine structure constant.  

4.3.1 The Correspondence Principle  
It was highly difficult for several physicists at the start of the twentieth century to accept 
the new quantum physics at face value and equally troubling that it should be assigned 
with any kind of physical reality. On the one hand, classical physics was incredibly 
successful in describing the macroscopic world as we see and feel it, while on the other it 
appeared that the new experiments could only be “explained” within the context of the 
theories of Planck, Einstein, and Bohr.1 This apparent paradox was lessened by the fact 
that the classical and quantum realms dealt with scales that were worlds apart. For 
example, consider the scale of the Bohr radius (i.e., on the order of 10−10m ) to those we 
experience on a daily basis. Although such could be the hope that both worlds would 
“coexist independently” in this manner, common sense would also dictate that there must 
exist a domain where the two realities must merge. After all, nature cannot be both 
classical and quantum at the same time, in view of their very different characters. 
 
Bohr was acutely aware of this issue and proposed The Correspondence Principle as a 
guideline: 
 
In the limits where classical and quantum theories should agree, the quantum theory 
must reduce to the classical result. 
 
This is not to be interpreted as a “concession” made by the new generation of physicists 
                                                
1 Incidentally, we now know, as physicists of that generation were about to realise, that 
Bohr’s theory of the hydrogen atom was not correct. But it provided the basics elements 
that would guide the elaboration of the successful, modern theory of quantum mechanics. 
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to make the quantum theory more palatable… But it should be understood in the context 
where one transitions from the quantum to the classical domain. Alternatively the 
Correspondence Principle could be stated such that the behaviour of quantum systems 
must reproduce the results of classical physics in the large-quantum-number limit. This 
will be made clearer with the following example.  
 
According to equations (4.44) and (4.49) the angular frequency of the radiation resulting 
from an atomic transition between two adjacent stationary states can be calculated with 
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
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  (4.55) 

       
To find the large-quantum-number limit, we choose an arbitrarily large value for n  such 
that we can approximate equation (4.55) to 
 

 

 

ω q 
2E0
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m
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e2
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2

.
  (4.56) 

 
This equation should reproduce the corresponding classical result as for such a large 
value for the principal quantum number the difference in energy associated with the two 
stationary states is much smaller than that of the ground state (i.e.,  En+1 − En  E0 ).  
 
Classically, the frequency of the radiation ω c  is the same as that of the acceleration of 
the electron responsible for the emission of electromagnetic waves. We therefore write 
 

 ω c =
v
r
,   (4.57) 

 
which is simply the reciprocal of the time taken to complete one orbit (i.e., the period). 
The classical relation for the orbital speed is obtained with equation (4.40) (or 
equivalently through the first of (4.46))  
 

 v = e2

4πε0mr
⎛
⎝⎜

⎞
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1 2

  (4.58) 

 
such that 
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 ω c =
e2

4πε0mr
3

⎛
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⎞
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1 2

.   (4.59) 

 
As can be verified by examining the different quantities composing it, this equation is 
entirely classical in nature, i.e., the Planck constant is not part of it. 
 
To establish the correspondence between equations (4.56) and (4.59), we note that the 
quantity  n  present (to the third power) in the quantum mechanical equation is nothing 
more than the angular momentum of the electron. We therefore first establish the 
following correspondence  
 

 
 
n→ mvr = mre2
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.   (4.60) 

 
Inserting this result in equation (4.56) we have 
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  (4.61) 

 
which is what we sought to establish in agreement with the Correspondence Principle. 

4.3.2 The Limitations of the Bohr Model 
As we stated before, the Bohr model of the hydrogen atom was not the final answer to the 
problem of atomic structure but an important, successful, and fruitful first step. His main 
successes were covered in the previous sections, but there were also some shortcomings 
that made it clear that further refinements were needed. First, the wavelength for the 
different spectral lines that could be experimentally verified for the hydrogen atom, it was 
found that the previous equation (4.51) was not perfect but that small discrepancies 
existed between theory and experiment. However, these could easily be corrected by 
taking the finite mass of the proton into account; Bohr’s theory effectively approximated 
the proton’s mass as infinite (see the Second Problem List). More importantly, the 
following limitations of the Bohr model were eventually recognised: 
 

1. Although it could be successfully applied to other one-electron atoms (e.g., He+ , 
Li2+ , etc.), it did not work for more complicated atoms, not even the next 
simplest atom, helium. 

2. It was not able to account for the intensity of spectral lines, or the fact they could 
split into sets of so-called fine structure lines when subjected to external magnetic 
or electric fields, for example. 

3. It could not explain the binding of atoms into molecules. 
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4. Finally, it was eventually discovered that the atomic ground state has an orbital 
angular momentum of zero and not   , as assumed by Bohr.      

 
These difficulties were eventually conquered, but only when the full quantum theory was 
established in the decade or two that followed. 
 
Exercises 
 
5. (Ch. 4, Prob. 19 in Thornton and Rex.) The Ritz combination rules express the 
relationships between the observed frequencies of the optical emission spectra. Prove one 
of the more important ones: 
 
 f Kα( ) + f Lα( ) = f Kβ( ),   (4.62) 
 
where Kα  and Kβ  refer to the Lyman series and Lα  to the Balmer series of hydrogen 
(see Figure 5). 
 
Solution. 
 
According to equation (4.51) the frequency of a transition for a one-electron atom is 
given by 
 

 
  
f = c

λ
= Z 2Rc 1

nl
2 −

1
nu

2

⎛
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⎞

⎠⎟
,   (4.63) 

 
where Z  is the charge of the nucleus and R  the Rydberg constant associated to the atom. 

Figure 5 – The different 
“shells” (i.e., K, L, M, etc.) of 
the hydrogen atom and their 
associated transitions. 
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Referring to the figure we have 
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  (4.64) 

 
which yield equation (4.63) since  1−1 4( ) + (1 4−1 9) = 1−1 9 . 
 
6. (Ch. 4, Prob. 29 in Thornton and Rex.) A hydrogen atom exists in an excited state for 
typically 10−8s . How many revolutions would an electron make in a n = 3  state before 
decaying? 
 
Solution. 
 
We know from equation (4.53) that 
 

 
 
vn =


nma0

.   (4.65) 

 
But the number of revolutions N  in a time interval t  is given by 
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  (4.66) 

  
which for t = 10−8s  yields N = 2.38 ×106 .  
 
 
     


